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The goal: Detect the Systematic Mistakes

Why?

To design better mitigation strategies(data collection, reweighting,
architecture/training changes etc) to enhance robustness.



Dissecting Systematic Mistakes?
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On the Importance of Regularization for Worst-Case Generalization.
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Dissecting Systematic Mistakes?

Class: Pneumothorax Class: Pneumothorax
Correlation: Chest tube Correlation: Chest tube



Dissecting Systematic Mistakes?

Mean Accuracy (Pneumothorax): ~70%

Class: Pneumothorax Class: Pneumothorax
Correlation: Chest tube Correlation : Chest tube
Accuracy: 90.4% Accuracy: 60.2%

i uses Clinically Meaningful Failures in Machine Learning for Medical Imaging. Rayner et al. ML4H at NeurlPS 2019



How to detect? (Aim 1)
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Captions Report

1. Allarge seagull stands on a dock || 1. perhaps mild increase in

against a backdrop of a harbor with || hydropneumothorax but with chest tube
boats and a blue sky 2. other less likely possibility include

2. A digitally altered image features a || expansion of known loculated

large bird, possibly an albatross, hydropneumothorax ( chest tube does not
superimposed over a backdrop of appear to be draining this region )

iIndustrial buildings by a body of 3. one of two right - sided pleural tubes has
water been removed in the interval

3. A seagull stands on rocks by the || 4. 3 chest tubes remain in place and there is
water at sunset, with a lighthouse again an area of hydro pneumothorax
visible in the background 74
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How to detect? (Aim 2 & 3)
C

Free-text

1. Allarge seagull stands on a dock
against a backdrop of a harbor with
boats and a blue sky

2. A digitally altered image features a
large bird, possibly an albatross,
superimposed over a backdrop of
industrial buildings by a body of
water

3. A seagull stands on rocks by the
water at sunset, with a lighthouse
visible in the background 74
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How to detect? (Aim 2 & 3)
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Free-text
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How to detect? (Aim 2)

Vision-Language
Alignment




Contents lists available at ScienceDirect

Journal of the National Cancer Center

journal homepage: www.elsevier.com/locate/jncc

Full Length Article

Global burden of female breast cancer: new estimates in 2022, temporal 1))
trend and future projections up to 2050 based on the latest release from e
GLOBOCAN

Yunmeng Zhang ', Yuting Ji ', Siwen Liu', Jingjing Li!, Jie Wu', Qianyun Jin, Xiaomin Liu’,
Hongyuan Duan', Zhuowei Feng!, Ya Liu', Yacong Zhang?, Zhangyan Lyu', Fangfang Song’,
Fengju Song!, Lei Yang?® Hong Liu**, Yubei Huang*

Results: In 2022, an estimated 2.3 million new BC cases and 666,000 BC-related deaths occurred globally, ac-
counting for 23.8 % and 15.4 % of all cancer cases and deaths in women, respectively. Regionally, Eastern Asia

Effect of mammographic screening from age 40 years on >
breast cancer mortality (UK Age trial): final results of a
randomised, controlled trial

CrossMark

Stephen W Duffy*, Daniel Vulkan*, Howard Cuckle, Dharmishta Parmar, Shama Sheikh, Robert A Smith, Andrew Evans, Oleg Blyuss, Louise Johns, m
lan O Ellis, Jonathan Myles, Peter D Sasieni*, Sue M Moss*

Summary
Background The appropriate age range for breast cancer screening remains a matter of debate. We aimed to estimate Lancet Oncol 2020;21: 1165-72
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Challenges of early screening

Annals of Internal Medicine ORIGINAL RESEARCH

Estimation of Breast Cancer Overdiagnosis in a U.S. Breast
Screening Cohort

Marc D. Ryser, PhD; Jane Lange, PhD; Lurdes Y.T. Inoue, PhD; Ellen 5. O'Meara, PhD; Charlotte Gard, PhD;
Diana L. Miglioretti, PhD; Jean-Luc Bulliard, PhD; Andrew F. Brouwer, PhD; E. Shelley Hwang, MD, MPH; and

Ruth B. Etzioni, PhD ORIGINAL ARTICLE Open Access
. . . . ®
Workload of diagnostic radiologists

in the foreseeable future based on recent
scientific advances: growth expectations
and role of artificial intelligence

Thomas C. Kwee' ® and Robert M. Kwee?

A Systematic Review of Fatigue in
Radiology: Is It a Problem?

Nadia Stec! OBJECTIVE. The purpose of this study was to review current literature regarding radi-
Danielle Arje! ologist fatigue.

Alan R. Moody! MATERIALS AND METHODS. A literature search was performed using PubMed.
Elizabeth A. Krupinski2 Key words and Medical Subject Heading terms were used to generate refined queries with in-
Pascal N. Tyrrell':3 clusion and exclusion criteria, focusing on fatigue and error. Results were selected according

to these criteria: examined radiologist fatigue and radiologic error stemming from fatigue;
experimental results measured as accuracy, error, or performance; and peer-reviewed publi-
cation. The risk of bias was addressed by including both quantitative and qualitative studies.
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How to detect? (Aim 3)
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Aim 1

The goal: Extract mixture of Interpretable
models from the Blackbox Post-hoc using

FOL



Why Post-hoc

Does not alter the
Black box

¥ No intervention
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Why Post-hoc Why Interpretable

Does not alter the Supports interventions
Black box :

¥ No intervention

Prediction: Brewer Blackbird XX
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Why Post-hoc Why Interpretable

Does not alter the Supports interventions
Black box Y ¢

¥ No intervention

Prediction: Brewer Blackbird XX

Concepts Concept values

f N
bill_length_shorter_than_head 0.89
bill_shape_allpurpose 042
wing_shape_roundedwings 0.40
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Why Post-hoc

Does not alter the
Black box

¥ No intervention

f

Why Interpretable

Supports interventions

Prediction: Brewer Blackbird X Fish Crow v/

Concepts
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wing_shape_roundedwings
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Why Post-hoc Why Interpretable

Does not alter the Supports interventions

Black box

X No intervention Why FOL?

Cardiomegaly <> heart size A enlarge
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Problem Set Up
B
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Wing color grey
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Tall pattern
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Problem Set Up

Report:

I {[elgIWF[eJesI@6]0ls! consolidation with adjacent.

While this be in nature, a CT
scan is recommended for further clarification.
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Problem Set Up

Report:

I {[elgIWF[eJesI@6]0ls! consolidation with adjacent.

While this be in nature, a CT
scan is recommended for further clarification.

parse the reports to get the concepts

1
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right upper lobe

left lower lobe
heart size
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Problem Set Up

Report:

I {[elgIWF[eJesI@6]0ls! consolidation with adjacent.

While this be in nature, a CT
scan is recommended for further clarification.

parse the reports to get the concepts

1
C

right upper lobe

X Y

left lower lobe Consolidation

heart size
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Discovering Hidden Concepts
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Discovering Hidden Concepts
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Carving out Interpretable Models

(I)Who
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Residual (r°)

m—)

I Blackbox Model

Interpretable Model

@ Selector
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Carving out Interpretable Models
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Carving out Interpretable Models
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Carving out Interpretable Models
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Each gis E-LENs (Barberio et al. AAAI 2022) to produce sample specific FOLs.
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Carving out Interpretable Models
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Each gis E-LENs (Barberio et al. AAAI 2022) to produce sample specific FOLS. Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat. Ghosh et al. ICML 2023.



Accuracy
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Comparing Performance
CUB-200 with VIiT CUB-200 with ResNet101
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Accuracy

Comparing Performance
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xamples on Chest X-ray

42
Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat. Ghosh et al. ICML 2023.



|¥Y, Examples on Chest X-ray

Expert 1 R

Pneumothorax
<> right_apical lung
A right_lung_unspec

J

* Right lung unspec refers a malignant neoplasm or cancer in an unspecified part of the right bronchus or
lung. 43

Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat. Ghosh et al. ICML 2023.



Expert 1 A

Pneumothorax
<> right_apical lung
A right_lung_unspec

J

Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat. Ghosh et al. ICML 2023.

l

Expert 2 R

Pneumothorax

<> emphysema

A left_lung_unspec
g p )
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Examples on Chest X-ray

Expert 1 A

Pneumothorax
<> right_apical lung
A right_lung_unspec

J

Expert 2 R

Pneumothorax

\

<> emphysema

Expert 3

A left_lung_unspec
Pneumothorax

‘ ')

<> left_apical lung

J

45
Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat. Ghosh et al. ICML 2023.



Application: Data-Efficient Fine-tuning

MIMIC-CXR

f* ] > Pneumothorax




Application: Data-Efficient Fine-tuning

MIMIC-CXR

fe ] > Pneumothorax

Transfer learning

tanford-CXR
2 () " : . [ ] > Pneumothorax
J 3 J Finetune
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Application: Data-Efficient Fine-tuning

Data and Computationally inefficient

The clinical rules are “invariant”

48

How deeply to fine-tune a convolutional neural network: a case study using a histopathology dataset. Kandel et al. 2020. Applied Sciences
Growing a brain: Fine-tuning by increasing model capacity. Wang et al. 2017 CVPR



Transferring to Stanford-CXR

- AUROC vs % training samples (Effusion)
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r Learning. Ghosh et al. MICCAI 2023. Top 14%
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Conclusion from Aim 1

1. Domain invariant rules learned: A mixture of interpretable
models are carved out of a Blackbox model offering best of
both worlds. [ICML 2023]

They effectively learn domain invariant rules.

2. Efficient transfer learning: Transfer Learning is more
efficient using limited training data with the new interpretable
model. [MICCAI 2023. Top 14%]
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Aim 2

The goal: Develop a large VLM for
Mammography



BioMedCLIP. Microsoft.

AUROC

1.000

0.975

0.950

0.925

0.900

0.875

0.850

0.825

0.800

Why SSL based VLMs

BioMedCLIP Zero-Shot Performance on MIMIC-CXR

— = Mean AUROC: 0.911J

0.950

Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

Disease 53



Why SSL based VLMs

B Age

1.0

80+ 60-80 40-60

Age prediction AUROC

Demographic bias of expert-level vision-language foundation models in medical imaging. Yang etal. Science Advances.

18-40
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. hy SSL based VLMs
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Demographic bias of expert-level vision-language foundation models in medical imaging. Yang etal. Science Advances.



VLM in Mammography: Strategies

Extract entities from text

& Small, nodular opacity in the |
right upger lobe J I

Knowledge
Extractor

Medical images w/ labels

Med Gemma (Google). Technical Report 2025

Sampling a batch of reports

- . A Text Embedding extraction
M g — —> —
— Encoder

Semantic
Matching Loss

rix s

at

- Wi Image
— —_—
e g “ Wi Encoder

Sampling a batch of images

MedCLIP. EMNLP 2022

.. 3emantid .a Pred
——stmitarit mi

V1 |V2 | e [V

0.01 02

.02

—similarity

icted

rix §

Ll

Medical Imaging

Embedding extraction

Radiology Dermatology Digital Pathology Ophthalmology Medical Text

£3

e

MedSigLIP

MedGemma 4B Multimodal

MedGenll Nna 27B Text

R\ Development and Evaluation

¥ Medical Imaging and Text Applications
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We need domain-specific VLMSs

Mammograms are large and have subtle cues

57



VLMs can help

Sample screening mammogram report:

Ground truth: Findings: The breast tissue is heterogeneously dense, which

could obscure detection of small masses. There are calcifications in the left
upper, slightly outer breast. There is also an asymmetry in the left breast.
Otherwise, no suspicious masses, clustered microcalcifications or areas of

architectural distortion are seen. Impression: BI-RADS: 0. Calcifications and

asymmetry in the left breast, which needs additional imaging.

58




Mammo-FM: pretraining




Mammo-FM: pretraining

I

I

Image
Encoder
Text
Encode
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Y
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Mammo-FM: pretraining

2 3 Image
S 3 Encoder
—
3 s
o
no mammographic evidence \
Tés + | of malignancy no significant N
B qo% interval change annual N
O = | screening mammography is &
\recommended Text w
Encode W -
3 no mammographic signal of \\
2 £ | cancer no significant change k
g qg). in the screening interval every 4 + + + + * + *
@ o | year is recommended
< N\ ~

Mammo-CLIP. Ghosh et al. MICCAI 2024.



Mammo-FM: pretraining

CC View
MLO View

no mammographic evidence
of malignancy no significant
interval change annual
screening mammography is
\recommended

Original
Report

no mammographic signal of
cancer no significant change
in the screening interval every

year is recommended
\

Augmented
Report

Mammo-CLIP. Ghosh et al. MICCAI 2024.

Image
Encoder

Text
Encode

I

I

Multi-view

Contrastive learning

J/
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Mammo-FM: pretraining

Mayo Clinic -
(N=96557)
(N=9900) - Train

@ W et

“!Hi‘ B Vaiid
EMBED

(N=20381)

g

&

UPMC
(N=13829)

&
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1.0

0.6-—

Mammo-FM: data efficiency

Out of distribution evaluation

RSNA (Cancer)

| =
| / —®= Mammo-FM (Multi-institution) == MedSigLIP

T T T
I o)
[rain data (%) o4
Mammo-FM: Breast-specific foundational model for Integrated Mammographic Diagnosis, Prognosis, and Reporting. Ghost et al. ArXiv 2025



Mammo-FM: data efficiency

Out of distribution evaluation

RSNA (Cancer) VinDr (Cancer) VinDr (Mass)  VinDr (Calcification) VinDr (Density)
0.91 ——a /’_‘ / / // :

U " 4

C sl

D

= . /// /. ///‘ /- /

10 25 50 80 10 25 50 80 10 25 50 80 10 25 50 80 10 25 50 80
Train data (%) Train data (%) Train data (%) Train data (%) Train data (%)

=@ Mammo-FM (Multi-institution) === MedSigLIP
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Mammo-FM: Breast-specific foundational model for Integrated Mammographic Diagnosis, Prognosis, and Reporting. Ghost et al. ArXiv 2025




Conclusion from Aim 2

1. Robust mammography features learned: \We learn generalized
features for mammography by pre-training on the largest and
most diverse mammography datasets. [MICCAI 2024. Top 11%]

It’s diagnostic performance is better than the SOTA generalist
industrial models.

2. Two Applications: It helps to interpret the risks from any SOTA
risk predictors.

We develop the 715t report generator for mammography using
Mammo-FM. [ArXiv 2025]

66



Aim 3

The goal: Detect the Systematic Mistakes
using Language
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Aim 3

The goal: Detect the Systematic Mistakes
using Language

Captions

il

Reports

Natural image
CLIP (ICML 2020)

Vision-Language

Alignment
CXRs Mammo
1. GLORIA
(ICCV2021)
2. MedCLIP ®
(EMNLP 2022)
3. CXR-CLIP
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(MICCAI 2023)



Aim 3

The goal: Detect the Systematic Mistakes
using Language

Captions

il

Reports

=

Natural image
CLIP (ICML 2020)

Vision-Language

Alignment
CXRs Mammo
1. GLORIA Mammo-FM
(ICCV2021) (MICCAI 2024,
2 MedCLIP ArXiv 2025)
(EMNLP 2022)
3. CXR-CLIP
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Aim 3
(Visual + non-Visual)
The goal: Detect the’'Systematic Mistakes °
using Language

Captions Reports

A Vision-Language
é Alignment

il

Natural image CXRs Mammo
CLIP (ICML 2020) 1. GLORIA Mammo-FM
(ICCV2021) (MICCAI 2024,
2 MedCLIP ArXiv 2025)
(EMNLP 2022)
3. CXR-CLIP

71

(MICCAI 2023)



Tracing non-visual mistakes

Population Individual Site Preprocessing
Ceod? - E
() t ]
—
Age: [32-88] Reason for Visit: [ ....] Manufacturer: | ....] Photometric Interpretation: |
Race: 80% Non-Hispanic  Blood Pressure: [...] X-ray Dosage: [...] Monochrome 1vs Monochrome2]

White, 20% Asian Lab Test: [....] Aperture Setting: [....] Crop ratio: [...]

72



How a human would do?




How a human would do?




How a human would do?

May be
° chest tube




Correct

How a human would do?

-t

May be
chest tube ‘

Incorrect

Validate:
Check the

performance gap
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Ladder

][

Classifier

LADDER: Language-Driven Slice Discovery and Error Rectificationin Vision Classifiers. Ghosh et al. ACL 2025.
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Ladder

][

Correct
Classifier

Incorrect

LADDER: Language-Driven Slice Discovery and Error Rectification in Vision Classifiers. Ghosh et al. ACL2025.
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Ladder
@ |[n]

o

A

Correct
Classifier

Incorrect

LADDER: Language-Driven Slice Discovery and Error Rectification in Vision Classifiers. Ghosh et al. ACL2025.
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Ladder
@ |[n]

o

A
v

1. thereis little change inthe 3
left chest tubes with area of
hydro pneumothorax

2. with chest tube remainingin
place and no striking change

Correct
Classifier
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Dataset: NIH Target: Pneumothorax
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Qualitative Results

Dataset: NIH Target: Pneumothorax
Bias: Chesttubes

Presence: 76.2 %  Classifier Performance Absence: 34.8%
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Thank you!

Questions?
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